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Figure 1.

The sides AB, BC, CA of the triangle ABC are partitioned by D, E, F in the ratios

BD p CE_p AF_p
DC ¢ EA g, FB g
The lines AD, BE, CF are known as cevians! and their intersections P, @, R form a triangle.

Denoting S, as the area of triangle ABC and S por s the area of triangle PQR then Routh’s theorem

gives the ratio of these two areas as

Sear _ (P2o2y — 010505 @
Supe (p1p2 + 4% + 0 )(p2p3 1 G453 + Pygs )(p3p1 t g0 t p3q1)

This theorem of geometry is attributed to Edward John Routh (1831-1907) who gave this in a slightly
different form in his 1891 book titled A Treatise on Analytic Statics with numerous examples (Routh 1891,
p-89). Routh was a fellow of Peterhouse, the oldest college of Cambridge University, England and the most
famous of the Cambridge coaches for the Mathematical Tripos?. An earlier statement of this theorem (with
a proof) was published in Solutions of the Cambridge Senate-House Problems and Riders for the year 1878,
edited by J.W.L. Glaisher (Glaisher et al., 1879, rider (vii), p. 33-34). James Whitbread Lee Glaisher (1848
1928) was a fellow of Trinity College, Cambridge and acknowledged as the provider of the solution (2) to the
problem described above.

1A cevian is a line that intersects both a triangle’s vertex and the side opposite. The name ‘cevian’ comes
from the Italian mathematician Giovanni Ceva who proved a well-known theorem involving cevians.

2 The Mathematical Tripos is the mathematics course taught in the Faculty of Mathematics at Cambridge
University and a Tripos is any examination undertaken by an undergraduate to qualify for a bachelor’s
degree. Prior to 1824 the Tripos was known as The Senate-House Examination. From the late 1700’s to the
early 1900’s the Tripos consisted of multiple examinations over a fortnight and the best performed student
was the senior wrangler, the second-best student was the second wrangler, and so on. (Potts was twenty-
sixth wrangler in 1827, Routh was senior wrangler in 1854 and Glaisher was second wrangler in 1871).
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An even earlier reference to this subdivision of the triangle is given in 1859 by Robert Potts, (a graduate of
Trinity College in 1827), in his School Edition of Euclid’s Elements of Geometry, the first siz books (Potts
1859, problem 100, p. 80)

There are many proofs of Routh’s Theorem, for example Coxeter (1969, p.211 and pp. 219-20), Niven (1976),
Klamkin and Liu (1981), and Kline and Velleman (1995). The proof below follows Glaisher et al. (1879,

rider (vii), pp. 33-34)

A Proof of Routh’s Theorem
Consider Figure 2 that is the triangle CAD of Figure 1 and the transversal BE (extended).

Figure 2.

From the transversal BE construct perpendiculars ¢, u, v to A, C, and D, and then

. u t AE
s = —— = —— and —=—
AE EC u EC
sinﬁz—:L and EZE
BC  BD v BD

. t v PD
siny = — = —— and —=—
D AP t AP

Multiplying the ratios gives

and so
AP _AE BC _ 4 mt4 (3)
pPD EC BD p, Py

Now consider Figure 3 that shows triangle A BD partitioned by the line BP on the left and triangle ABC
partitioned by the line AD on the right.

A A
P
A 0
B D B b, D 4 C
Figure 3



In Figure 3 (Left) the area ratio of the two triangles ABP and ABD is

Sipp %(AB)(AP)sinH AP AP 1
Sipp  3(AB)(AD)sin6 AD AP+ PD L PD

AP
and using (3) in (4) and simplifying gives

Sapp _ @ (p +a) (5)

Sipp PPy + @8 P10y

In Figure 3 (Right) the area ratio of triangles ABC and ABD is

Sapp %(BA)(BD)SmQS _BD  p

Sise  L(BA)(BC)sing BC  p +aq

Multiplying the two area ratios (5) and (6) gives

Sapp _ Dy, (7)
Sipe PPy + @0 T PG

In a similar manner, beginning first with triangle ABE and the transversal FC and then with triangle BCF
and the transversal AD the following area ratios can be obtained

S
CBQ _ p2q3 (8)

Sipe PoP3 B3 + Doty

and

SACR _ Py (9)
Sype D3P T G4 + g

Now the area of triangle PQR in Figure 1 can be expressed as
SPQR = SABC - SABP - SCBQ - SACR

and division by S, . gives the area ratio

Spor _ 1 Sape _ SoBg  Sacr (10)
SABC SABC SABC SABC

Substituting the three area ratios (7), (8) and (9) into (10) gives

Supe PPyt Q% PG PPyt B3 + Py P3Pyt G3q + P3q

Spor _q_ Pigs B Pads _ sty

and after some reduction we have Routh’s theorem (2)

Spor B (P1P2P3 ~— 0% )2

Sape (p1p2 + 4% + 0 )(p2p3 1 443 + Pygs )(p3p1 + g9 t p3q1)




Alternative forms of Routh’s Theorem

[A]

B D c
Figure 4
The sides AB, BC, CA of the triangle ABC are partitioned by D, E, F in the ratios

@:izl,%:i:l,ﬂzizl where z,9,2 > 0 (11)
DC ze x FA yf y FB zg =z
Comparing the ratios (1) with the ratios (11)
p1:p2:p3:1,q1:x7 94 =Y, 43 = 2

and using these in (2) gives Routh’s theorem as

SPQR _ (1—xyz)2

Sipe (Lt+z+az)(l+y+yz)(1+z+2)

[BI

(1-Ma
B D a C

Figure 5
The sides AB, BC, CA of the triangle ABC are partitioned by D, E, F in the ratios

BD Aa A CE  ub 1 AF v v

DC (1—=A)a 1-X BA (1-p)b 1-u FB (1-v)e 1—v

where A\, pu,v > 0 (13)



Comparing the ratios (1) with the ratios (13)
PL=AN Dpp=p py=v,q=1-ANg=1-pqg =1-v

and using these in (2) gives Routh’s theorem as

Span _ (v = (1=A)(1 =) (1= v)) (14)

S50 (1—)\+V)\)(1—u+)\,u)(1—u+,uy)

A Special Result of Routh’s Theorem
If, in any triangle ABC, the sides AB, BC, CA are partitioned by D, E, F in the common ratio

BD _CB_AF 1
DC FEA FB 2
then Routh’s theorem gives

Spor _ 1

SABC 7

This can be verified by: (i) letting p, = p, = p; =land ¢ = ¢, = ¢; =2 in (2);
(ii) letting # = y = z = 2 in (12); and

(iii) letting A = p = v = é in (14).
The triangle ABC partitioned in this way is sometimes called Feynman’s Triangle and arises from the
problem posed to the American physicist Richard Feynman

For a triangle in the plane, if each vertex is joined to the point one-third along the
opposite side (measured say anti-clockwise), prove that the area of the inner
triangle formed by these lines is exactly one-seventh of the area of the initial
triangle. (Duran-Camejo 2010)

It is said that this problem was posed by Kai Li Chung, from Stanford University, to Feynman during a
dinner conversation after a colloquium at Cornell university. According to Cook and Wood (2004) “Feynman
could not believe that the ratio of the areas of the triangles was 1/7 since it had nothing to do with the
number three. He spent most of the night trying to disprove it, but finally proved it in the special case when
the triangle was equilateral.” Cook & Wood (2004) and de Villiers (2005) have several proofs of this special
result.



Feynman’s proof

Here we follow the proof given in Cook and Wood (2004) for
an equilateral triangle ABC where the sides AB, BC, CA are
partitioned in the common ratio

BD _CE_AF 1

DC FEA FB 2
That is, each vertex is joined to the point one-third along the
opposite side, measured anti-clockwise as shown in Figure 6.

Let AB=BC =CA=3,thus AF=BD =CE =1,
FB = DC = EA = 2 and denoting the area of ABC'as S,

then S,y = %(AB)(AC)sin(%O) = %.

In the triangle AFC, the side FC' can be obtained from the

cosine rule where

(FC)2 = (AF)2 +(AC)2 —2(AF)(AC)COS(6OO) giving

Figure 6

Now consider the similar triangles AFC and AFR shown in Figure 7
noting ¢ = FRA = FAC = 60°. First, in triangle AF(C the sine rule

gives — r = FC and then S.mg = AR = L Then, in triangle
sinf  sin¢ sing FC J7
AFR the sine rule gives AF = PR and then sin = FR _——
sing  sinf sing AF 1
1
Equating these ratios gives z = —.
J7
Similarly, in triangle AFC, sin 0 = AF = 1 and in triangle AFR,
siny AC 3

sin 6 _ IR = and equating these ratios gives y = 3z =
siny AR y

sl

Figure 7

Now, considering the symmetry of Figure 6, z = FR = FQ = DP, y = AR = CQ = BP, and the sides of

the internal equilateral triangle PQR are - Yy = 3 and the area of the internal triangle PQR is

J7

93

1
S = —— whichis =85 .
PQR 28 7 VABC

The proof shown here for an equilateral triangle can be generalised and extended to any triangle by
understanding that every triangle is an affine transformation of an equilateral triangle and that an affine
transformation preserves length and area ratios.

An affine transformation of points ¢ = 1,2,...,n in a u-v coordinate system to an z-y system can be defined as

z, = au, + by, + ¢

y; = du, +ev, + f

(15)



where a,b,c,d,e and f are constants. c¢ and fare translations between the origins of the u-v and z-y coordinate
systems and scale factors and rotation are functions of a, b, d and e.

Suppose that the equilateral triangle ABC and the points DEF of Figure 6 are transformed by (15) with

1 1 2
a=Lb=-—%=,c=0,d==,e=—
V3 37 3

shown below in Figure 8 where the diagram on the left is the original figure, the diagram on the right is the
transformed figure and the coordinates u,v (original) and z,y (transformed) are shown in between.

, f = 0 to the triangle A’B’C’ with points D’ E’'F’. The result is

u,v) (z,y) A’
§ﬂ} o [371]
2" 2 2
0,0) B' (0,0)
3,0) c' (31)
1,0) D’ 1,l
3
53 C (11

5’7} P B
1,J§) Jaa Py
3

Cl

Figure 8

From the coordinate data in Figure 8 the following length ratios can be obtained:

Il
A,B,:@,A,F,:«/g and AF 1
2 6 A'B 3

'/
B Vi, B Y0 g B 1
3 B'C’ 3

Anl
C,A/:§, C/Elzé and _CE :l
2 6 c'A' 3

and these demonstrate that the affine transformation preserves length ratios in this case.

Also, from the coordinate data and using the rule that the area of a triangle is equal to é(base X height) ,

then denoting areas of triangles as Sy, that following area ratios can be obtained

93 33 Supp 1

Sipe = s Sapp = and g =
4 ABC 3
15 5 S 122122 14 ]_
SA/B/C/: —, SA/B/D/: — and M = —
4 4 A/B/C/ 3

and these area ratios demonstrate that the affine transformation preserves area ratios in this case.



A Special Case of Routh’s Theorem for the Equilateral triangle ABC
A

B d D td C

Figure 9. ABC is an equilateral triangle and S,,5,,5; are areas

The sides AB, BC, CA of the equilateral triangle ABC are partitioned by D, F, F in the common ratio

BD _CE _AF _d _1 where t > 0 (16)
DC EA FB td t
Routh’s theorem for this special case is
p 2 2 2
Sror _ Sy _ (# 1) _ (t-1) (1+t+¢) _ (=) (17)
Sago 3(Si+8,)+ S, (1+t+t2)3 (1+t+t2)3 L+t+1

where §,,5,,5; denote areas shown in Figure 9.
Also, comparing ratios (1) with ratios (16)

p1:p2:p3:17 Q1:QQZQ3:t
and using these in (5) and (7) gives

Sapp _ Sacq _ Sacw _ S+ 5, _ t(1+1)

= - = (18)
Sasp Speg Sacr 25,45, 14+t+#
and
Sapp _ Spco _ Sacn _ S + 5, _ ¢ (19)
Sisc  Sise  Sape  3(S+8)+S;  1+t+e
Dividing (17) by (19) gives the ratio
2
S. t—1
Ll "
S, + 5, :

Rearranging (18) and simplifying gives a quadratic equation in ¢ as
St + St — (8, +8,)=0

with the solution



5 +S? +45,(8, +5,) =S, /5, (55, +48,) o)

28, 28,
Special Results for ratios 55 , S+ 5 and S5 in the Equilateral Triangle of Figure 9
SABC SABC SI + SZ
2 2
Sy (t_l) S +5, _ ! Sy :(t_l)
¢ Sipe 1+t+82 Sipe 14+t +¢82 S, + 5, t

2 1/7 2/ 7 1/2
3 4/13 3/13 4/3
4 9/21 4/21 9/4
5 16/31 5/31 16/5
3/2 1/19 6/19 1/6
5/2 3/13 10/39 9/10

Table 1

Curly’s Conundrum No. 20

Curly’s Conundrum No. 20

The equilateral triangle shown in the figure below is divided by three
straight lines. The area of each quadrilateral “A” is 22 square units
and the area of each triangle “B” is 8 square units. What is the area
of the centre triangle?

2>

B A

The Institution of Surveyors Victoria (ISV) has a news bulletin Traverse that is published quarterly and
circulated to members. In Traverse 120 (Nov., 1991) the puzzle (above) was published as Curly’s
Conundrum No. 20. In the next issue, rather than the solution, the following note appeared:

(Well, Curly has finally tripped himself up!)

| am embarrassed! A solution to Conundrum No. 20 is beyond me. The puzzle was published in The Australian
Mind of the Year Contest for 1989 and was one of the questions posed to the five finalists.

The answer, published the following week was five (5) square units.

PS: Please send me a solution as this problem has been driving me crazy for years.



Curly’s Conundrum No. 20 has been re-published in Traverse 161, 202, 243, 284 and 325. And in each
subsequent issue the same mea culpa as above has appeared. The two solutions below may be helpful

Solution to Curly’s Conundrum No. 20 Using Routh’s Theorem

1 The diagram and given information suggests that the special case of Routh’s theorem is applicable and

that areas S, = B =8 and S, = A = 22 (comparing Curly’s diagram with Figure 9).

The factor ¢ can be obtained from (21) as

=S5, £/5,(58, + 458, -
t=—1 1( L 2) _8E32 g (taking positive value)

25, 16

2 §,, the area of the small triangle in the middle of the diagram, can be obtained from the ratio (20) as

il
53:(Sl+52)( —1) (30) 23 :(30)%:5
2

The total area of the figure is 34 + 3B + S, = 95 square units and the ratio of the area of the small inner
triangle to the total area is 5/95 = 1/19.

For an equilateral triangle of area S = 95 m? having sides of length I then | = /% =14.811924 m . If
3
I =td+d=d(1+1t) [see Figure 9] and ¢ = 3/2 then d = 5.924770 m and td = 8.887154 m.

The dimensions of the figure in Curly’s Conundrum No. 20 (lengths in metres) are

90° 00" 00"

Figure 10
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Solution to Curly’s Conundrum No. 20 Not using Routh’s Theorem

1

Let Figure 9 describe Curly’s problem where areas S, = B =8, 5, = A = 22 and the area of triangle
PQR, denoted as Sp,p = S is required. Now, let d = AF = BD = CFE, td = FB = DC = FA and

the sides of triangle ABC are AB = BC = CA = d(l + t).
Using the cosine rule in the triangle ABD gives (AD)2 = (BD )2 + (AB)2 — Q(BD)(AB)COS<6OO) and

AD = AP + PD = dN1 +t + t* (22)

In Figure 9, the triangles ABP and ABD (having areas S, p, S, respectively) have a common side
AB and a common angle A and using the formula for the area of a plane triangle the area ratio
S np _%(AB)(AP)sinA_A_p_ AP 1
Sipp  L(AB)(AD)sinA AD AP+ PD §7D

P

(23)
1+

where S, ., =8, +8, and §,,, = 25, + 5,
The area ratio on the left-hand-side of (23) is a known quantity and the right-hand-side has an unknown
length ratio PD/ AP . An expression for this ratio can be obtained as follows

Figure 11 shows similar triangles ABD and BPD. Using the sine rule in

a1+t
triangle ABD gives d = AD = ( ) and ratios
sinf  sing sin 7y

sing  d sinf 1 sing ~ AD

= —, = , (24)
sing AD siny 1+t siny d(l—i—t)
. . . . . T d Yy .
Using the sine rule in triangle BPD gives —— = —— = — and ratios
sinf  sing  sinvy
s.lnezz’ s.1n9 72’ STIIQZ5:§ (25)
sing d siny y siny oy
Equating ratios in (24) and (25), and using (22) gives
sinf _d _z ivin x—i——d
sing AD d BIvine AD 14t 4¢£
(26) .
sin 0 1 T (141) d(1+1) Figure 11
— = ——=— giving y ==z = =t
siny 14+t gy N1+t +¢82
> d dt(1+1t) d
Now AP =AD —z =dVv1+t+t* — and PD = ¥ = ————= so the

ittrer Jitt+e V14t 4482

ratio PD/ AP

PD 1
AP t(1+1) 1)
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Substituting (27) in (23) and simplifying gives

Sigp 25,48,  t(1+1)

Sy Si+S, 14t

which can be re-arranged into a quadratic equation in ¢ as
St + St — (8, +8,)=0

with the solution

5, 82+ 48, (S, +8,) S5, £ /5, (58, + 48, o8)

25, 28,
Substituting S, = 8 and S, = 22 into (28) and solving for the positive value of ¢ gives

-8 ++1024 3
t=—1 = 2 (29)
16 2

By symmetry and with reference to Figures 11 and 9, AR = BP = y and PR = AD — z — y and using
(26) and (22) gives

d(t2 —1)

and since PR = RQ = P(@Q the area of the equilateral triangle PQR is

PR =

2
(-1

Spor :l(PR)(PQ)sinP:M s (30)

2 1+t+¢ 4

An expression for d? can be obtained from the area of triangle ABD as

Supp = L(AB)(BD)sin(60° ) = d* (1 + t)? =25, + 5,
substituting S, = 8 and S, = 22 gives
7 - i[_?’S } (31)
J3l1+¢

Substituting (31) into (30) and using (29) gives

H
)4;\01
\_/

38 (t2—1)
POR T r e g2 [SJ[

2

i
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